RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

SINGLET-TRIPLET EXCITATION OF ROOM-TEMPERATURE PHOSPHORESCENCE OF 1-BROMONAPHTHALENE–β-CYCLODEXTRIN–CYCLOHEXANE TERNARY COMPLEXES

PII
S303451125040058-1
DOI
10.7868/S303451125040058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 1
Pages
42-49
Abstract
The spectra and kinetics of room-temperature phosphorescence of ternary complexes of 1-chloronaphthalene and 1-bromonaphthalene with β-cyclodextrin and cyclohexane were studied. The lifetimes of phosphorescence of ternary complexes measured at room temperature in the absence of oxygen were 214 and 10 ms for 1-chloronaphthalene and 1-bromonaphthalene, respectively. Triplet-triplet annihilation was detected for 1-bromonaphthalene complexes and the possibility of direct excitation of triplet states as a result of singlet-triplet absorption was shown.
Keywords
фосфоресценция синглет-триплетное поглощение 1-бромнафталин 1-хлорнафталин комплексы включения β-циклодекстрин
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Organic photovoltaics. Brabec C., Scherf U., Dyakonov V. (eds.). Germany, Wiley-VCH, 2014. https://doi.org/10.1002/9783527656912
  2. 2. Organic semiconductors for optoelectronics. Naito H. (ed.). Wiley, 2021. https://doi.org/10.1002/9781119146131
  3. 3. Birks J.B. The theory and practice of scintillation counting. Elsevier, 1964. https://doi.org/10.1016/C2013-0-01791-4
  4. 4. Organic scintillators and scintillation counting. Horrocks D.L., Peng C.-T. (eds.). Elsevier, 1971. https://doi.org/10.1016/B978-0-12-356250-0.X5001-5
  5. 5. Zhou W.-L., Lin W., Liu Q., Chen Y., Liu Y. // Chem. Sci. 2022. V. 13. № 27. P. 7976–7989. https://doi.org/10.1039/d2sc01770a
  6. 6. Zhang Y., Li H., Yang M., Dai W., Shi J., Tong B., Cai Z., Wang Z., Dong Y., Yu X. // Chem. Commun. 2023. V. 59. № 36. P. 5329–5342. https://doi.org/10.1039/d3cc00923h
  7. 7. Lei Y., Dai W., Li G., Zhang Y., Huang X., Cai Z., Dong Y. // J. Phys. Chem. Lett. 2023. V. 14. № 7. P. 1794–1807. https://doi.org/10.1021/acs.jpclett.2c03914
  8. 8. Sun H., Zhu L. // Aggregate. 2023. V. 4. № 1. e253. https://doi.org/10.1002/agf2.253
  9. 9. Ma X.K., Liu Y. // Acc. Chem. Res. 2021. V. 54. № 17. P. 3403–3414. https://doi.org/10.1021/acs.accounts.1c00336
  10. 10. Zhao W., He Z., Tang B.Z. // Nat. Rev. Mater. 2020. V. 5. № 12. P. 869–885. https://doi.org/10.1038/s41578-020-0223-z
  11. 11. Shi H., Yao W., Ye W., Ma H., Huang W., An Z. // Acc. Chem. Res. 2022. V. 55. № 23. P. 3445–3459. https://doi.org/10.1021/acs.accounts.2c00514
  12. 12. Gao R., Kodainani M.S., Yan D. // Chem. Soc. Rev. 2021. V. 50. № 9. P. 5564–5589. https://doi.org/10.1039/d0cs01463j
  13. 13. Wu Z., Choi H., Hudson Z.M. // Angew. Chem. Int. Ed. 2023. V. 62. № 32. e202301186. https://doi.org/10.1002/anie.202301186
  14. 14. Hirata S. // Adv. Opt. Mater. 2017. V. 5. № 17. 1700116. https://doi.org/10.1002/adom.201700116
  15. 15. Datta S., Xu J. // ACS Appl. Bio Mater. 2023. V. 6. № 11. P. 4572–4585. https://doi.org/10.1021/acsabm.3c00677
  16. 16. Zhao M., Wan P., Shi J., Ji L. // J. Mater. Chem. C. 2025. V. 13. № 11. P. 5424–5438. https://doi.org/10.1039/D4TC04139A
  17. 17. Zhang H., Tan Y., Gong S. // Chem. A Eur. J. 2025. V. 31. № 18. e202404452. https://doi.org/10.1002/chem.202404452
  18. 18. Dos Santos J.M., Hall D., Basumatary B., Bryden M., Chen D., Choudhary P., Comerford T., Crowin E., Danos A., De J. // Chem. Rev. 2024. V. 124. № 24. P. 13736–14110. https://doi.org/10.1021/acs.chemrev.3c00755
  19. 19. Thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). Duan L. (ed.). Elsevier, 2022. https://doi.org/10.1016/C2019-0-00250-6
  20. 20. Gray V., Moth-Poulsen K., Albinson B., Abrahamsson M. // Coord. Chem. Rev. 2018. V. 362. P. 54–71. https://doi.org/10.1016/j.ccr.2018.02.011
  21. 21. Sasaki Y., Amemori S., Yanai N., Kimizuka N. // Bull. Chem. Soc. Jpn. 2021. V. 94. № 6. P. 1760–1768. https://doi.org/10.1246/bcsj.20210114
  22. 22. Marchetti A.P., Kearns D.R. // J. Am. Chem. Soc. 1967. V. 89. № 4. P. 768–777. https://doi.org/10.1021/ja00980a007
  23. 23. McClure D.S., Blake N.W., Hansi P.L. // J. Chem. Phys. 1954. V. 22. № 2. P. 255–258. https://doi.org/10.1063/1.1740046
  24. 24. Yuan J., Chen R., Tang X., Tao Y., Xu S., Jin L., Chen C., Zhou X., Zheng C., Huang W. // Chem. Sci. 2019. V. 10. № 19. P. 5031–5038. https://doi.org/10.1039/C8SC05198D
  25. 25. Alexander E., Chavez J., Ceresa L., Seung M., Pham D., Gryczynski Z., Gryczynski I. // Dyes Pigments. 2023. V. 217. P. 111389. https://doi.org/10.1016/j.dyepig.2023.111389
  26. 26. Nazarov V.B., Avakyan V.G., Alfimov M.V. Luminescence of naphthalene in self-assembled inclusion complexes with cyclodextrins. In: Naphthalene: structure, properties and applications. Antsyforov G.I., Ivanski A.F. (eds.). Nova Science Publishers Inc, New York, 2012. pp. 127–153.
  27. 27. Nazarov V.B., Avakyan V.G., Radyuk V.Y., Alfimov M.V., Vershinnikova T.G. // J. Lumin. 2011. V. 131. № 9. P. 1932–1938. https://doi.org/10.1016/j.jlumin.2011.02.004
  28. 28. Makhrov D.E., Ionov D.S., Ionova I.V., Alfimov M.V. // Khimiya Vysokikh Energii. 2025. V. 59. № 1. P. 18–25. https://doi.org/10.31857/S0023119325010036
  29. 29. Nazarov V.B., Avakyan V.G., Alfimov M.V. // J. Lumin. 2020. V. 219. P. 116909. https://doi.org/10.1016/j.jlumin.2019.116909
  30. 30. Ionov D.S., Ionova I.V., Makhrov M.A., Alfimov M.V. // Khimiya Vysokikh Energii. 2023. V. 57. № 2. P. 91–99. https://doi.org/10.31857/S0023119323010060
  31. 31. Eaton D.F. // Pure Appl. Chem. 1990. V. 62. № 8. P. 1631–1648. https://doi.org/10.1351/pac199062081631
  32. 32. Zhu Y.-X., Peng J.-H., Zhang Y. // Anal. Chim. Acta. 2007. V. 583. № 2. P. 364–369. https://doi.org/10.1016/j.aca.2006.10.055
  33. 33. Xie J.W., Xu J.Q., Chen G.Z., Liu C.S. // Sci. China B. Chem. 1996. V. 39. № 4. P. 416–424.
  34. 34. Avakyan V.G., Titov S.V., Nazarov V.B., Alfimov M.V. // J. Lumin. 2022. V. 242. P. 118581. https://doi.org/10.1016/j.jlumin.2021.118581
  35. 35. McGlynn S.P., Azumi T., Kinoshita M. Molecular spectroscopy of the triplet state. Englewood Cliffs, N.J.: Prentice-Hall, 1969. 448 p.
  36. 36. Parker C.A. Photoluminescence of solutions. Amsterdam: Elsevier, 1968. 507 p.
  37. 37. Avakyan V.G., Nazarov V.B., Alfimov M.V. // Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2003. V. 52. № 4. P. 869–876. http://dx.doi.org/10.1023/A:1024404526893
  38. 38. Avakyan V.G., Nazarov V.B., Alfimov M.V. // Pis'ma v ZhETF. 1997. V. 65. № 7. P. 507–510. https://doi.org/10.1134/1.567393
  39. 39. Avakyan V.G., Nazarov V.B., Alfimov M.V. // Izvestiya Akademii Nauk. Seriya Khimicheskaya. 1997. V. 46. № 8. P. 1450–1452. https://doi.org/10.1007/BF02505671
  40. 40. Livshits V.A., Avakyan V.G., Ionova I.V., Nazarov V.B., D'yakovskii B.G., Gromov S.P., Alfimov M.V. // Rossiiskie Nanotekhnologii. 2011. V. 6. № 11–12. P. 27–42. https://doi.org/10.1134/S1995078011060085
  41. 41. Avakyan V.G., Nazarov V.B., Vershinnikova T.G., Alfimov M.V., Rudiak V.Yu. // Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2012. № 3. P. 662–664. https://doi.org/10.1007/s11172-012-0098-2
  42. 42. Avakyan V.G., Nazarov V.B., Vershinnikova T.G., Alfimov M.V. // Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2000. № 10. P. 1716–1723. https://doi.org/10.1007/BF02496337
  43. 43. Avakyan V.G., Nazarov V.B., Alfimov M.V. // Khimiya Vysokikh Energii. 2019. V. 53. № 2. P. 100–105. https://doi.org/10.1134/S0023119319020116
  44. 44. Avakyan V.G., Nazarov V.B., Alfimov M.V. // Khimiya Vysokikh Energii. 2021. V. 55. № 3. P. 195–205. https://10.31857/S0023119321020091
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library